Rhabdomyosarcoma (RMS) is a malignant soft-tissue tumor that develops from striated muscle cells. The 1-year incidence for those under 15 years of age is estimated at 1:224,000 and is responsible for 5% to 8% of all childhood malignancies. RMS can originate anywhere in the body, including regions without striated muscle. The head and neck are affected at a rate of 40%, with the orbital cavities and paranasal sinus most frequently affected. The cause and mechanism of RMS are still largely unknown. Radiotherapy, used in the majority of treatments, often affects facial growth, vision, and hearing.

After chemotherapy and radiotherapy, patients may experience oligodontia, microdontia, hypodontia, microstomia, xerostomia, and trismus. These conditions often lead to impaired ingestion, distorted speech, and poor esthetics.

Successful dental implant treatment for patients undergoing the sequelae of irradiation has been reported, even in infancy. Nevertheless, the incidence of osteoradionecrosis remains unclear, with reports ranging between 0 and 73%, and consensus on the risks of tooth extraction after irradiation is lacking. In addition, evidence concerning prosthetic restoration of teeth damaged by radiation, aside from their removal and replacement by implant-supported prostheses, is sparse.

A female patient, now aged 17 years, was diagnosed with rhabdomyosarcoma (RMS) in the right pterygopalatine fossa when she was 3 years old. The RMS was successfully treated by excision, but the subsequent radiation and polychemotherapy resulted in the complete anesthesia of the distribution area of the right trigeminal nerve and loss of vision in the right eye. The patient also experienced pain in the mandibular joints and masticatory muscles. Panoramic radiographs displayed a multiple agenesia of the permanent teeth and underdeveloped apices. Treatment involved the fabrication of a complete maxillary denture. A removable device was fabricated to evaluate her response to an occlusal vertical dimension increase of 6 mm and provide a stable intercuspal position. After wearing the prosthesis for 6 months, the patient reported that she was completely free of symptoms.
left first maxillary molar and left mandibular incisors and canine tested negative to CO₂ cold spray. The patient reported a long history of complaints about her intraoral condition, and her nutritional intake was restricted to strained food.

The patient also experienced pain in the mandibular joints and masticatory muscles. A panoramic radiograph (Fig. 1B) revealed multiple missing permanent teeth and rudimentary developed roots. Her mandibular movement was severely restricted.

After consultation, an orthodontist and an oral and maxillofacial surgeon proposed corrective osteotomy and implant-supported prostheses. However, after lengthy discussion with the patient and her parents, implant therapy was declined and a treatment plan with removable prostheses was formulated, as the authors were unaware of reports of the successful fixed restoration of teeth with retarded root growth or root damage.

Treatment was initiated with a removable mandibular occlusal device that increased her occlusal vertical dimension (OVD) by 6 mm, measured in the molar region. The goals were to provide a stable intercuspal position and to evaluate her tolerance to the increased OVD (Fig. 2).

Impressions were made using a pediatric stock tray and alginate (Alginoplast; Kulzer GmbH). Her condition made a facebow recording impossible, so the maxillomandibular relation records were made with the casts mounted on an articulator. Increasing the OVD has been reported to facilitate treatment in patients with generalized and complex dental abnormalities and should be determined by the need to accomplish satisfactory and esthetically pleasing restorations.²²,²³ The patient immediately reported relief and comfort with the new occlusal relationship, and the 6 mm OVD increase was retained.

The complete maxillary overdenture was fabricated on the basis of a template (Erkodur; Erkodent) created from her tooth alignment (Fig. 3A), which, despite divergent teeth, incorporated the occlusal device into the prosthesis (Palapress; Kulzer GmbH) (Fig. 3B) and avoided tooth preparations. Maxillary and mandibular impressions were made in a custom tray with a polyvinyl siloxane impression material (Honigum; DMG) (Fig. 4). By extending the maxillary denture base over the palate and vestibule, the prosthesis was also supported by soft tissue.

The mandibular prosthesis restored missing posterior teeth (Vita VM CC; Vita Zahnfabrik) and increased the length of anterior teeth with resin. The occlusal device was supported by both hard and soft tissue to provide load distribution and positional stability. Because the teeth were malpositioned and could not be properly evaluated intraorally, the midline and lip lines were assessed intraorally and transferred to the casts. The device was supported by all the teeth. To increase the retention, both devices were extended apically to the survey line of each tooth. The OVD determined during the 6-month trial period was transferred to the articulator (Fig. 5).

After the wax tooth arrangement and clinical evaluation, in which artificial teeth were arranged and evaluated to verify lip support and horizontal and vertical jaw relations, both occlusal devices were incorporated into...
the prostheses. The existing teeth subsequently served as a guide for prosthesis insertion and provided retention and stability. The potential for trauma to the periodontium and surrounding soft tissue was minimal. Initially the patient’s speech was poor, but it improved with speech therapy.

After 6 months of wear, the patient reported being completely free of symptoms. She did not report any difficulties with the dentition or with the cranio-mandibular or muscular structures during this time (Fig. 6).

DISCUSSION

In this treatment, every tooth was retained to conserve the supporting bone and provide better retention than a conventional complete denture. Conventional tooth preparation for cast restorations was also avoided because this would have limited prognosis. A cement-retained fixed partial denture also posed a risk of additional trauma to the teeth, which were already significantly mobile. The aim was to attain maximum positional stability and splint the existing teeth.

The factors evaluated for increasing the OVD were remaining tooth structure, anterior teeth, space available for restoration, and esthetics. Nevertheless, changes in masticatory system function should be monitored during follow-up. Implant-supported restorations remain a future option.

SUMMARY

Direct loading to teeth adversely affected by radiotherapy or chemotherapy with a removable device is a new therapeutic concept, and to our knowledge, it has not been previously described. Prospective clinical studies will be challenging, but research is warranted to characterize nonsurgical prosthetic restoration in patients experiencing radiation sequelae, particularly regarding the long-term effects on orofacial structures.

Figure 3. A, Maxillary occlusal device for maxilla. B, Device polymerized into maxillary denture.

Figure 4. Definitive maxillary impression.

Figure 5. New occlusal dimension with stable intercuspal position.
REFERENCES


Corresponding author:
Dr Korbinian Benz
Department of Oral Surgery and Dental Emergency Care
Faculty of Health
School of Dentistry Witten/Herdecke University
Alfred-Herrhausen-Strasse 50, 58448 Witten
GERMANY
Email: Korbinian.Benz@uni-wh.de