Chairside treatment of amelogenesis imperfecta, including establishment of a new vertical dimension with resin nanoceramic and intraoral scanning

Moritz Zimmermann, Dr med dent,a Christina Koller, Dr med dent,b Reinhard Hickel, Prof Dr med dent,c and Jan Kühnisch, PD, Dr med dentd

CLINICAL REPORT

Treatment of patients with severe amelogenesis imperfecta often represents a challenge as the mechanical properties of the dental tissues are often poor.1 Because of the brittle tooth substance, vertical dimension is often lost, resulting in various functional problems such as temporomandibular disorders.2 Therefore, a complete mouth rehabilitation at an early age seems to be an appropriate approach. Many treatment options have been proposed for amelogenesis imperfecta.3 Conservative approaches with direct composite resins or more extensive complete crowns have been the most commonly described treatment options.4,5 One of the shortcomings of both of these treatment options is the need for multiple dental visits and substantial chair time. Recently published studies outline the benefits of early treatment of amelogenesis imperfecta.6 Early intervention is reported to be beneficial for the patient because it minimizes tooth decay and wear and thus stabilizes the vertical dimension.7 However, early treatment for young patients has often been limited to the use of interim materials such as stainless steel crowns.8

The patient and parents first attended the Department of Restorative Dentistry and Periodontology at the Ludwig-Maximilians-University when the patient was 8 years old. Their wish was for complete mouth rehabilitation, as the patient suffered from severe hypersensitivity. A comprehensive evaluation, including radiographs, was performed. No functional disorders were noted. The diagnosis was a severe form of amelogenesis imperfecta type II. Complete arch scans of the intraoral situation were made using a powder-free intraoral scanning device (Cerec Omnicam; Sirona) (Fig. 1). Conventional impressions were made (Alginat; Omnident Dental), and diagnostic casts were poured with Type IV gypsum (Cerec Stone BC; Sirona). After treatment options were discussed with the patient, the treatment plan was as follows: complete crowns for the primary premolars and permanent molars, providing an increase of 5 mm in the vertical dimension. The measure of vertical increase was set in respect to the presumable loss of tooth substance, both for functional and esthetic aspects. Because no functional disorders were found, there was no need for

ABSTRACT

Amelogenesis imperfecta is a hereditary disease affecting the structural development of tooth substance. This clinical report describes a 1-visit chairside treatment of an 8-year-old patient with amelogenesis imperfecta, using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. Intraoral scanning was performed using the Cerec Omnicam. Thirteen resin nanoceramic crowns (Lava Ultimate) were fabricated chairside by using a Cerec MCXL milling unit and seated adhesively. The patient’s treatment included establishing a new occlusal vertical dimension and new centric relationship. Reevaluation after 6 months showed a stable situation. (J Prosthet Dent 2016;116:309-313)
preliminary splint therapy. The clinical treatment was performed in a 1-visit chairside treatment using computer-aided design and computer-aided manufacturing (CAD-CAM) technology, with the patient under general anesthesia.

Diagnostic casts were mounted on an articulator with an increase of 5 mm in the vertical dimension. Both maxillary and mandibular permanent molars and primary premolars were waxed to the new vertical dimension. An occlusal device, from canine to canine, was fabricated using silicone material (Optosil Comfort Putty; Heraeus Kulzer). Complete arch scans of the waxed maxillary and mandibular arches were made with the Cerec Omnicam (Fig. 2). The CAD design mode for CAD-CAM restorations was set to “biocopy” mode.

The patient underwent general anesthesia supervised by anesthesiologists throughout the procedure. Local anesthesia (Ultracain D-S 2%; Sanofi Aventis) was also administered. The teeth were prepared according to guidelines. An astringent paste (Astringent Retraction Paste; 3M ESPE) was used for hemorrhage control. Quadrant scans of the maxillary and mandibular arches were made (quadrants [Q]1/Q4 and Q2/Q3). Then, a buccal scan in the premolar region was made with the silicone device inserted in the anterior tooth region. The CAD design was performed using virtual articulation and “biocopy” mode (Cerec software v4.2; Patterson Companies, Inc). Resin-based CAD-CAM nanoceramic blocks were selected as restorative material (Lava Ultimate; 3M ESPE; shade A3.5 LT) and milled with the Cerec MCXL milling unit (cylinder pointed burr 12, step burr 12s). Milling mode was set to “standard.” Composite resin restorations were provided for both central and lateral maxillary incisors (Tetric Evo Ceram; Ivoclar Vivadent AG) using a standardized protocol (Syntac; Ivoclar Vivadent AG). The CAD-CAM restorations were seated adhesively. The luting surfaces of the restorations were airborne-particle abraded with Si-coated aluminum oxide (Cojet; 3M ESPE; diameter ≤50 μm, 200 kPa). Restorations were cleaned with alcohol and air dried with oil- and water-free air. Before luting, silane (Espe-Sil; 3M ESPE) was applied to the luting surface of the restorations for a period of at least 60 seconds. The prepared teeth were isolated with a rubber dam and etched with 37% phosphoric acid (30 seconds enamel, 15 seconds dentin). Syntac was used as an adhesive bonding agent (15 seconds primer, 10 seconds adhesive, Heliobond) with Variolink II high viscosity (Ivoclar Vivadent AG) dual-polymerizing composite resin system. After removing any excess, an oxygen layer inhibitor material was applied to the area of the cementation interface (Airblock; Dentsply DeTrey). Luting composite resin was polymerized with a polymerization lamp (Satelec MiniLED; KaVo) using 16 J/cm² from the occlusal, mesial, distal, buccal, and lingual aspects for 60 seconds each. The restorations margins were finished and the occlusal contacts were adjusted using fine diamond rotary instruments coupled with constant water-cooling. A 3-step ceramic polishing kit (Brasseler) was used for the definitive polishing procedure. The clinical treatment procedure for tooth preparation and transfer of the vertical dimension from the articulator to patient is shown in Figure 3. The Cerec procedure for the transfer of the waxing to the CAD-CAM restorations is shown in Figure 4. Figure 5 shows a comparison between the preoperative and postoperative situations.

DISCUSSION

This clinical report describes a complex 1-visit chairside treatment of an 8-year-old patient with amelogenesis imperfecta, using CAD-CAM technology. Only laboratory CAD-CAM procedures have been described in reports for the treatment of amelogenesis imperfecta in the past.10
Treatment needs for primary teeth are controversial. The most severe problems for patients living with amelogenesis imperfecta occur if the initial vertical dimension is lost. Consequently, the early treatment of amelogenesis imperfecta might minimize the extent of caries and tooth wear. The early treatment may therefore prevent functional disorders from appearing. Simultaneously, the space required for permanent tooth eruption can be ensured. This means that complex orthodontic treatment may be prevented for some patients. Compared with the conventional multivisit treatment approaches, the 1-visit chairside CAD-CAM
The approach described is advantageous as additional appointments are no longer necessary for the replacement of poorly-fitting stainless steel crowns on permanent molars.

Compound CAD-CAM materials such as resin-based nanoceramic might be preferable for chairside treatments because of their rapid postprocessing protocol. Furthermore, several studies have demonstrated their advantages.

However, the CAD process ‘biocopy’ described in this report has proven difficult. As large identical areas of tooth surface are required for the superimposition of 2 different digital scans, matching could be achieved only after a few minutes, perhaps because brittle tooth

Figure 5. A, Preoperative facial view. B, Postoperative facial view.
substance resulted in a slight loss of tooth material between the waxed model scan and intraoral preparation scan.

The rapid development of CAD-CAM technology may make the future treatment of patients with amelogenesis imperfecta, such as this one, easier to treat. Significant improvements regarding the CAD process have already been integrated into new CAD-CAM systems such as virtual articulation and device function.14

SUMMARY

This clinical report describes the 1-visit chairside treatment of an 8-year-old patient with amelogenesis imperfecta, using CAD-CAM technology. The patient’s treatment included the establishment of a new occlusal vertical dimension.

REFERENCES

Corresponding author:
Dr Moritz Zimmermann
Department of Computerized Restorative Dentistry
Center of Dental Medicine, University of Zurich
Plattenstrasse 11
8032 Zurich
SWITZERLAND
Email: moritz.zimmermann@zzm.uzh.ch

Copyright © 2016 by the Editorial Council for The Journal of Prosthetic Dentistry.

Receive Tables of Contents by E-mail

To receive tables of contents by e-mail, sign up through our Web site at http://www.journals.elsevierhealth.com/periodicals/ympr.

Instructions

Log on and click “Register” in the upper right-hand corner. After completing the registration process, click on “My Alerts,” then “Add Table of Contents Alert.” Select the category “Mosby” or type The Journal of Prosthetic Dentistry in the search field and click on the Journal title. The title will then appear, and having already completed the Registration process, you may add tables of contents alerts by accessing an issue of the Journal and clicking on the “Add TOC Alert” link.

You will receive an e-mail message confirming that you have been added to the mailing list.

Note that tables of contents e-mails will be sent when a new issue is posted to the Web site.