Transmucosal Implant Placement with Submarginal Connective Tissue Graft in Area of Shallow Buccal Bone Dehiscence: A Three-Year Follow-Up Case Series

Martina Stefanini, DDS, PhD1
Pietro Felice, MD2/Claudio Mazzotti, DDS, MSc3
Matteo Marzadori, DDS, MSc3
Enrico F. Gherlone, MD4/Giovanni Zucchelli, DDS, PhD5

The aim of the present case series study was to evaluate the short- and long-term (3 years) soft tissue stability of a surgical technique combining transmucosal implant placement with submarginal connective tissue graft (CTG) in an area of shallow buccal bone dehiscence. A sample of 20 patients were treated by positioning a transmucosal implant in an intercalated edentulous area. A CTG sutured to the inner aspect of the buccal flap was used to cover the shallow buccal bone dehiscence. Clinical evaluations were made at 6 months (T1) and 1 (T2) and 3 (T3) years after the surgery. Statistically significant increases in buccal soft tissue thickness and improvement of vertical soft tissue level were achieved at the T1, T2, and T3 follow-ups. A significant increase in keratinized tissue height was also found at T3. No significant marginal bone loss was recorded. The submarginal CTG technique was able to provide simultaneous vertical and horizontal soft tissue increases around single implants with shallow buccal bone dehiscence and no buccal mucosal recession or clinical signs of mucositis or peri-implantitis at 1 and 3 years. Int J Periodontics Restorative Dent 2016;36:621–630. doi: 10.11607/prd.2537

Dental rehabilitation of partially or totally edentulous patients with oral implants has become a routine treatment modality in recent decades, with reliable long-term results.1-12 However, unfavorable local conditions of the alveolar ridge due to atrophy, periodontal disease, or trauma sequelae may provide insufficient bone volume, potentially compromising the long-term survival of implants or rendering implant placement inadvisable from a functional and esthetic viewpoint.

In particular, if a horizontal defect is present implant placement may result in a dehiscence or a fenestration defect, exposing part of the implant body. Data reported in the literature seem to demonstrate that guided bone regeneration (GBR) procedures are a reliable means for treating dehiscences and fenestrations created during implant placement. Survival rates of implants placed in sites augmented with GBR are consistent with those reported for implants placed in sites not needing bone augmentation procedures.13 However, since a marginal bone level change between 1.7 and 2.2 mm can be expected with or without GBR treatment after 5 years,14 it can be argued that GBR is indeed indicated only when the initial defect size is larger than 2 mm in the vertical dimension. Recent systematic reviews concluded that

1Adjunct Professor, Dental Clinic Vita Salute San Raffaele, Milano University, Milan, Italy.
2Researcher, Department of Biomedical and Neuromotor Sciences, Bologna University, Bologna, Italy.
3Department of Biomedical and Neuromotor Sciences, Bologna University, Bologna, Italy.
4Professor and Chairman, Dental School Vita Salute San Raffaele, Milano University, Milan, Italy.
5Professor, Department of Biomedical and Neuromotor Sciences, Bologna University, Bologna, Italy.

Correspondence to: Prof Giovanni Zucchelli, University of Bologna Department of Biomedical and Neuromotor Sciences, Via S Vitale 59, 40125 Bologna, Italy.
Fax: +39 051 225208. Email: giovanni.zucchelli@unibo.it

©2016 by Quintessence Publishing Co Inc.
there is not enough evidence demonstrating the need to cover fenestration/dehiscences to guarantee a better outcome as far as long-term implant survival is concerned.15,16 Moreover, from the available literature it can be assumed that most treated buccal bone dehiscences are not completely covered by regenerated bone,17 even though this does not appear to have a negative effect on long-term survival of the implants. Only one study related the residual buccal bone dehiscence (RBD) to long-term peri-implant health.18 The author observed that implants exhibiting RBD values > 1 mm were at higher risk of developing peri-implant disease and mucosal recession, which could compromise the overall esthetic outcome of implant therapy.

Crestal bone changes after implant placement were also related to soft tissue thickness.19 In this controlled clinical trial, it was concluded that when soft tissue thickness was less than 2.0 mm, crestal bone loss of up to 1.45 mm could be expected. Conversely, in the presence of thicker soft tissues significant marginal bone recession could be avoided if the implant-abutment junction was positioned approximately 2 mm above the bone level.

The positive effect of the soft tissue thickness raises a question as to whether it is indicated to preventively increase the thickness of the buccal mucosa at dehisced implant sites to reduce the risk of mucosal recession and crestal bone loss.

The aim of the present case series study was to evaluate shortand long-term (3 years) soft tissue stability after a surgical technique combining transmucosal implant placement with submarginal connective tissue graft (CTG) in an area of shallow buccal bone dehiscence.

Materials and methods

A sample of 20 subjects (8 men and 12 women) were selected among individuals referred to the dental clinic at Bologna University. The study protocol and informed consent were in full accordance with the ethical principles of the Declaration of Helsinki of 1975, as revisited in 2000.

All participants were aged > 18 years and periodontally and generally healthy, had no medical contraindication for implant surgery, and were nonsmokers. All patients presented with an intercalated edentulous area (one missing tooth) distal to the canine in the maxilla or mandible, at least 4 mm of bone width, and 10 mm of bone height measured by cone beam computerized tomography (CBCT) and had healthy soft tissue (bleeding on probing [BOP] < 15%; Plaque Index [PI] < 15%), a minimum of 2 mm keratinized gingiva at the edentulous area, and no previous bone augmentation procedures (Fig 1).20–23

Implant selection

All patients received one Straumann Standard Plus transmucosal implant of 10-mm length and a diameter of 3.3 mm for replacing premolars and 4.1 mm for replacing molars.

Initial therapy and clinical measurements

All patients received a session of prophylaxis to remove microbial deposits with an ultrasonic instrument,
a rubber cup, and a low-abrasive polishing paste, and were instructed in proper oral hygiene measures. Full-mouth and local plaque and bleeding scores (FMPS and FMBS) were recorded as a percentage of total surfaces (four per tooth), which revealed the presence of plaque and bleeding, respectively.

All measurements were carried out by a single masked examiner (M.M.), who did not perform the surgeries.

The following clinical measurement was taken before surgery (T_b):

- Vertical soft tissue level (VSTL).
 In all patients, a resin stent extended to the occlusal surfaces of teeth adjacent to the edentulous ridge was prepared. A reference point (slot) was impressed on the stent at the midbuccal area of the implant site to allow reproducible periodontal probe positioning. The VSTL was measured as the distance from the most apical extension of the edentulous area to the reference point of the stent (SRP).

The following clinical measurements were taken during surgery (T_0):

- Soft tissue thickness (STT), measured 2 mm apical to the line of the crestal incision with a caliper accurate to the nearest 0.1 mm.
- Keratinized tissue height (KTH), measured from the line of the crestal incision to the mucogingival line, identified with Lugol stain.
- Bone dehiscence (BD), measured as the linear distance from the most apical extension of the transmucosal implant collar to the most apical extension of the buccal bone crest.
- Graft thickness (GT), measured with a caliper accurate to the nearest 0.1 mm.

The following clinical measurement was taken at the end of the surgery (T_s):

- VSTL as the distance from the buccal soft tissue margin to the SRP.

The following clinical measurements were made at the time of the final restoration (6 months after implant placement) (T_1) and 1 (T_2) and 3 years (T_3) after the final restoration:

- VSTL, measured at T_s, immediately before definitive crown placement, and at T_s and T_3 after removal of the crown.
- Probing pocket depth (PPD), measured from the buccal soft tissue margin to the tip of the probe inserted in the sulcus.
- Clinical attachment level (CAL), measured from the SRP to the tip of the probe inserted in the sulcus.
- KTH, measured from the buccal soft tissue margin to the mucogingival line.
- Presence of peri-implant disease, assessed as follows:
 - Peri-implantitis: positive BOP with or without pus formation and PPD > 5 mm
 - STT, measured 2 mm apical to the gingival margin with a short needle for anesthesia with a silicon disk stop. The penetration depth was measured with a caliper accurate to the nearest 0.1 mm.

All measurements were performed using a manual probe (PCP UNC 15, Hu-Friedy) (with the exception of STT, as noted above) and were rounded to the nearest millimeter.

Radiographic examination

Standardized intraoral radiographs were performed for each patient at T_s, T_0, T_1, T_2, and T_3. Paralleling technique with a Rinn film holder was used for radiographic examination. The images were obtained in such a way that the implant-abutment interface and the threads would be clearly visible. Crestal bone level changes were calculated with a dedicated software (Instrumentarium Dental, CLINIVIEW), calibrated by using the implant diameter as a reference point.

Surgical technique

A midcrestal incision of the edentulous ridge was performed with two short mesial and distal releasing incisions to preserve the adjacent interdental tissue. The buccal flap was elevated full thickness beyond the...
mucogingival line to completely expose the buccal bone. The palatal/lingual flap was raised minimally to provide access to the implant site. The site was prepared using traditional burs. During the preparation of the implant site, special care was taken to preserve at least 1 mm of lingual/palatal bone. Implants were positioned with the transmucosal collar above the crestal bone, and 2-mm-high healing caps were placed. A CTG resulting from the extraoral de-epithelialization with the knife blade of a free gingival graft harvested from the palate was sutured, with two horizontal mattress sutures, at the inner surface of the buccal flap, 1 mm apical to the flap KT margin (submarginal CTG). The mesiodistal length of the CTG was 6 mm greater than the diameter of the implant, and the apicocoronal dimension was chosen to cover the transmucosal portion of the implant, the implant exposure, and 2 mm of bone apical to the buccal BD. The buccal flap was coronally advanced by means of periosteal and muscle incisions, and the flap KT was tightly adapted to the 2-mm-high healing cap with sling suture. Interrupted sutures were used to accomplish, as much as possible, primary intention wound healing between the transmucosal portion of the implant and the adjacent teeth (Fig 2).

Postsurgical instructions and infection control

Patients received a prophylactic dose of 2 g amoxicillin plus clavulanic acid 1 hour before the surgery. An anti-inflammatory drug (ibuprofen) was prescribed the day of surgery and only if necessary afterward. Patients were instructed not to brush the treated area, but to rinse for 1 minute with a 0.12% chlorhexidine solution three times a day. Two weeks after the surgical treatment, the sutures were removed. Plaque control in the surgically treated area was maintained by rinsing with chlorhexidine for 2 weeks after suture removal. Patients were again instructed to clean the teeth in the treated area with an ultrasoft toothbrush and a roll technique for 1 month and to rinse with chlorhexidine once a day. Then patients were instructed to use a soft toothbrush and rinse with chlorhexidine once a day for another month. When chlorhexidine was discontinued, full mechanical interproximal cleaning in the surgical area was reinstituted. The patients were recalled for prophylaxis every 2 weeks after suture removal for the first 2 months and subsequently once a month until the final restoration.
Six months after surgery, a final impression was taken and the resulting cast was used for final crown design. A metal-ceramic crown was used to rehabilitate the implants.

Statistical analysis

The statistical analysis was performed using statistical application software (Small Stata version 12.0, Statacorp). Descriptive evaluation of all variables was recorded as mean ± SD. Statistically significant differences regarding VSTL, PPD, CAL, KTH, and STT among groups were determined by one-way analysis of variance (ANOVA). When a significant difference between groups was found, a post hoc analysis with Bonferroni test was performed. A significance level of .05 was chosen for all tests.

Results

Following the initial oral hygiene phase and post-treatment examinations, all subjects showed a good standard of supragingival plaque control (FMPS < 15%, FMBS < 15%). Healing was uneventful for all treated test cases (Fig 3). No implant sites showed signs of peri-implantitis or mucositis.

The descriptive statistics for the clinical parameters measured at T_b, T_s, T_0, T_1, T_2, and T_3 are shown in Table 1. Statistically significant differences are shown in Table 2.

For VSTL, significant decreases were observed between T_b and T_s, T_1, T_2, and T_3 (P < .01); between T_1 and T_3 (P < .05); and between T_2 and T_3 (P < .05). No significant
differences between T_1, T_2, and T_3 were found for PD or CAL. For KTH, significant increases were observed between T_0 and T_3 ($P < .05$). For STT, significant increases were observed between T_0 and T_1, T_2, and T_3 ($P < .01$) and between T_1 and T_2 and T_3 ($P < .01$). For MBL, no significant differences were found between T_0 and T_1, T_2, or T_3 ($P < .01$).

Table 2 Statistically significant parameters between times

<table>
<thead>
<tr>
<th></th>
<th>T_b</th>
<th>T_0</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0</td>
<td>VSTL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_1</td>
<td>VSTL</td>
<td>STT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_2</td>
<td>VSTL</td>
<td>STT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_3</td>
<td>VSTL</td>
<td>KTH, STT</td>
<td>VSTL</td>
<td>STT</td>
<td></td>
</tr>
</tbody>
</table>

$T_b =$ before surgery; $T_0 =$ during surgery; $T_1 =$ after surgery; $T_2 =$ prosthesis delivery; $T_3 =$ 1-year follow-up; $T_s =$ 3-year follow-up; VSTL = vertical soft tissue level; KTH = keratinized tissue height; STT = soft tissue thickness.

Fig 5 Standardized intraoral radiographs taken (a) before definitive crown placement (6 months after implant placement), (b) at the 1-year follow-up recall visit, and (c) at the 3-year follow-up recall visit. Note the minimal amount of marginal bone loss.

Fig 4 Clinical photographs taken at 1 year (a, c) and 3 years (b, d) after implant placement.
Clinical and radiologic outcomes at 1 and 3 years of one of the treated cases are shown in Figs 4 and 5, respectively. A comparison between the baseline situation and clinical outcomes at 1 and 3 years of a second case are shown in Figs 6 to 9.

Discussion

The results of this study showed that the proposed surgical approach combining transmucosal implant placement with submarginal CTG covering shallow buccal bone dehiscences was able to provide successful long-term (3 years) results in terms of marginal soft tissue stability and peri-implant health, with no signs of peri-implantitis or mucositis.

Regarding the esthetics of the rehabilitation, buccal bone dehiscences should be covered for at least three reasons: (1) soft tissue recession at the buccal aspect, leading to exposure of implant threads; (2) gray areas on soft tissues overlying the dehiscence, especially in patients with thin peri-implant tissues,
due to the transparency of the mu-
cosa; and (3) flattened aspect of the
alveolar ridge in the buccal side due
to the horizontal defect.15

The capability of connective
tissue to firmly attach to the tita-
nium with fibers running parallel to
the surface and the efficacy of this
connective tissue attachment in
preventing subgingival plaque accu-
mulation are both well documented
in the literature.26 Furthermore, it
has been demonstrated that the
type of connective tissue graft used
in the present study, deriving from
the extraoral disepithelization of a
free gingival graft, is more stable
and less prone to resorption than
one taken with connective tissue
harvesting techniques. This was
attributed to the better quality of the
dense collagen-rich subepithelium
palatal connective tissue compared
with that closer to the palatal bone,
which is richer in fatty and glandular
tissue.25

The importance of increasing
buccal soft tissue thickness to pre-
vent gingival recession and colored
transparency and the capability of
surgical soft tissue augmentation
procedures to give the prosthetic
crown a natural esthetic emergence
profile has been well document-
ed.27 In the present study, together
with a significant STT increase, a
significant decrease in VSTL corre-
sponding to a clinical vertical soft
tissue augmentation was observed.
This allowed the soft tissue margin
of the final prosthetic crown to be
positioned more coronally (about 3
mm in mean value) with respect to
the baseline soft tissue level of the
edentulous area. A simultaneous
vertical and horizontal soft tissue
augmentation was not previously
reported in studies analyzing hori-
zontal bone augmentation proce-
dure and must be interpreted as
an esthetic advantage of the pro-
posed surgical technique. The ver-
tical soft tissue augmentation could
be explained by the capability of
CTG to prevent coronally advanced
flap (CAF) shrinkage.28,29 In the
present surgical technique the sub-
marginal positioning of the CTG, 1
mm more apical than the flap KT
margin, and the coronal advance-
ment of the flap could explain the
minimum postsurgical soft tissue
shrinkage. This has been confirmed
by the data of the present study
showing no statistically significant
differences between VSTL at the
end of the surgery and 6 months
later, at the final rehabilitation. In
the present study, both the buccal
soft tissue thickness and the verti-
cal soft tissue augmentation conti-
ued after the 1-year follow-up. This
could be attributed to the so-called
creeping phenomena, which is the
tendency of the thickened soft tis-
sue to migrate coronally.

The ability of the bilaminar
 technique to obtain simultaneous
horizontal and vertical soft tissue
augmentation was reported in a
study on the treatment of single im-
plants with buccal soft tissue dehis-
cence.30 In this pilot study the same
type of disepithelized CTG was
applied submarginally, compared
with the CAF tightly adapted to the
smooth surface of the implant abut-
ment, which was reduced 1 month
before the surgery. Great increase
in buccal soft tissue thickness and
complete coverage at the level of
the homologous contralateral natu-
ral tooth was achieved in 75% of the
treated defects.

The use of transmucosal im-
plants seems to be critical to the
success of the proposed surgical
technique and for the maintenance
phase. From a surgical standpoint,
it allowed adaptation of both the
CTG and the CAF to a hard and
smooth surface in a more coronal
position compared with the bone
crest. This would have been theo-
retically possible even with the
use of a bone-level implant and a
higher healing cap. However, in the
latter case the implant-abutment
connection would have been more
subgingival after healing and thus
more difficult for the patient and
dental hygienist to clean and more
susceptible to infection. Further-
more, Linkevicious et al19 demon-
strated that greater bone loss can
be expected in the presence of
naturally thin soft tissue (< 2 mm)
and that marginal bone loss can
be almost completely avoided if
the implant-abutment junction is
positioned above the bone level
and the soft tissue is naturally thick
(> 2 mm) or thickened by means of
surgical soft tissue augmentation
procedures. In the present study, 3
years after the surgery no clinical
signs of peri-implant mucositis or
periimplantitis were recorded in any
 treated implant sites. In the pres-
ent study, baseline and follow-up
radiographs were obtained using a
parallel technique with a Rinn film
holder, and individual silicone/resin
devices were not constructed. A
similar approach was used in prior
prospective clinical studies19,31 and can be considerate adequate for bone loss measurements. Although some limitations in this method to compare radiographs cannot be excluded, the amount of mesial and distal bone loss over the 3 years is similar to that reported by Linkevicius et al19 and less than the one reported in the literature for successful bone level implants.32,33

In most of the clinical cases in the present study, especially those with less baseline KTH, the bone dehiscence was covered by the alveolar mucosa. Thus, it seemed rational to increase the thickness of the alveolar mucosa by placing a submarginal CTG to prevent soft tissue recession or transparency of the gray area. The increase in buccal soft tissue thickness was not associated with an equal increase in KTH, especially at 6 months and 1 year. This is only an apparent discrepancy because the increase in KTH due to graft application can remain completely undetectable if there is no dehiscence of the covering flap. It can be speculated that some increase in gingival thickness did not become increase in KTH because the graft remained covered by the alveolar mucosa of the covering flap. Conversely, this allowed for a reduction in graft resorption and improved esthetic outcomes that could be jeopardized by the white-scar appearance of the exposed graft. Different from the 1-year outcome, the increase in KTH became statistically significant after 3 years. The same long-term results had already been reported after CAF for the treatment of gingival recession and were ascribed to the tendency of the mucogingival line to regain its genetically determined position.34 The increase in KTH with time further improved the esthetic camouflaging of the surgically treated area compared with the adjacent soft tissue and facilitated long-term patient plaque control. Longer-term data are recommended to evaluate and compare the stability of peri-implant soft tissue in cases where an increase in buccal soft tissue thickness has been recorded with no or minor increase in KTH, and vice versa.

Conclusions

The results of a case report study should always be interpreted with caution, and randomized controlled clinical trials in which bone augmentation procedures are compared with submarginal CTG are recommended. Nevertheless, within the limits of the present case series study the following conclusions can be drawn:

- The transmucosal implant placement with submarginal CTG technique was able to provide simultaneous increase in buccal soft tissue thickness and improvement in vertical soft tissue level around a single implant with a shallow (< 3 mm) buccal bone dehiscence.
- These successful results were achieved with no buccal mucosal recession or clinical signs of mucositis or peri-implantitis at either the 1-year or the 3-year follow-up.
- The augmented buccal soft tissue thickness together with the transmucosal implant placement minimized the marginal bone loss.

Acknowledgments

The authors reported no conflicts of interest related to this study.

References

