Influence of parafunctional loading and prosthetic connection on stress distribution: A 3D finite element analysis

Leonardo Bueno Torcato, DDS, MSc, a Eduardo Piza Pellizzer, DDS, MSc, PhD, b Fellippo Ramos Verri, DDS, MSc, PhD, c Rosse Mary Falcón-Antenucci, DDS, MSc, PhD, d Joel Ferreira Santiago Júnior, DDS, MSc, PhD, e and Daniel Augusto de Faria Almeida, DDS, MSc f

The load condition of implant-supported prostheses, an important factor in maintaining long-term osseointegration, 1 may predict the success and longevity of prosthodontic treatment. 2 Late implant failure appears to be related primarily to biomechanical complications of the system components, 3 such as porcelain fracture, screw relaxation, infrastructure fracture, and retention loss of the cemented crown and implant fracture. 4 Unlike natural teeth, dental implants lack a periodontal ligament that dampens occlusal loads and provides proprioception. 5 When the periodontal ligament is absent, implants are rigidly connected to the bone tissue with low axial (3-5 μm) and lateral (10-50 μm) mobility, 6 providing limited proprioceptive feedback mechanisms of the jaw elevator muscles.

Because patients with implant-supported prostheses tend not to perceive small-magnitude occlusal forces, the occlusal overload increases, causing marginal bone loss and implant failure. 7 Physiological limits of the maxilla and mandible remain unknown. 8 However, excessive dynamic loading or overload by applying repeated loads can cause large strains (2000-3000 microstrain). 9

Supported by São Paulo Research Foundation grant 2011/03624-0.

ABSTRACT

Statement of problem. Clinicians should consider parafunctional occlusal load when planning treatment. Prosthetic connections can reduce the stress distribution on an implant-supported prosthesis.

Purpose. The purpose of this 3-dimensional finite element study was to assess the influence of parafunctional loading and prosthetic connections on stress distribution.

Material and methods. Computer-aided design software was used to construct 3 models. Each model was composed of a bone and an implant (external hexagon, internal hexagon, or Morse taper) with a crown. Finite element analysis software was used to generate the finite element mesh and establish the loading and boundary conditions. A normal force (200-N axial load and 100-N oblique load) and parafunctional force (1000-N axial and 500-N oblique load) were applied. Results were visualized as the maximum principal stress. Three-way analysis of variance and Tukey test were performed, and the percentage of contribution of each variable to the stress concentration was calculated from sum-of squares-analysis.

Results. Stress was concentrated around the implant at the cortical bone, and models with the external hexagonal implant showed the highest stresses (P<.001). Oblique loads produced high tensile stress concentrations on the site opposite the load direction.

Conclusions. Internal connection implants presented the most favorable biomechanical situation, whereas the least favorable situation was the biomechanical behavior of external connection implants. Parafunctional loading increased the magnitude of stress by 3 to 4 times. (J Prosthet Dent 2015;114:644-651)
Clinical Implications

The internal connection may be appropriate for oral rehabilitation with an implant-supported prosthesis because of reduced distribution of stress on the surrounding tissues.

microfractures in the bone-implant interface (>4000 microstrain), and a decrease in bone density around the implant platform, thereby leading to bone defects.

Marginal bone loss may be affected by factors such as characteristics of the implant platform surface or the prosthetic connection. Thus, stability of the connections among different parts of the implant also contributes to the longevity of the implant-supported prosthesis, particularly in single posterior restorations where a resilient interface between the abutment and the implant is necessary. Some researchers have found that the configuration of the platform connections would reduce the stress concentration in the peri-implant bone.

The Brånemark system (Nobel Biocare), which is characterized by an external hexagonal configuration, was designed to facilitate implant insertion and to provide an antirotational feature. Despite its reversibility and compatibility with different systems, its effectiveness is limited when subjected to nonaxial loads and possible abutment micromovements that cause instability for the prosthetic interface, gap formation, screw loosening, or fatigue fracture because of reduced hexagonal height.

To reduce or eliminate biomechanical problems inherent in external hexagonal configuration systems, alternative connections based on the opposition of the walls of the implants and abutments have been suggested: a conical connection with an angle of between 8 and 11 degrees and an internal hexagonal connection.

Few laboratory studies evaluating the influence of parafunctional loading in implant-supported prostheses are available, especially with regard to variation in prosthetic connection. The 3-dimensional (3D) finite element analysis (FEA) method allows areas and/or points with a greater potential for failure after a load application to be predicted. This method may also predict failures resulting from clinical factors at the implant-abutment connection.

The purpose of the present study was to assess the influences of parafunctional occlusal force and prosthetic connection on stress distribution by using 3D FEA. The hypotheses of the study were that parafunctional occlusal force would induce high stress concentrations in the cortical bone in all connections; that the external connection would produce a higher stress intensity at the bone level; that the oblique load would produce higher stresses in all prosthetic connections; that the external connection associated with parafunctional occlusal force would induce the highest stresses; and that the incidence of the oblique load and parafunctional occlusal force would result in high-intensity stress on all connections.

MATERIAL AND METHODS

The following 3 factors were studied: the connection type at 3 levels (external hexagon, internal hexagon, and Morse taper), the occlusal force at 2 levels (normal, parafunctional), and the load direction at 2 levels (axial and oblique). FEA was used to determine the maximum principal strain for the cortical bone.

Three 3D finite element models were constructed (Table 1). Each model represented a mandibular bone section of the second molar region that included an implant (5.0×10 mm) and a single implant-supported prosthesis. The external hexagon, internal hexagon, and Morse taper connections were tested. All models were loaded with normal and parafunctional occlusal forces and under axial and oblique loading. The bone block was obtained with a computerized tomography scan arrangement using medical imaging software (InVesalius; CTI). The bone block image was simplified by using 3D computer graphics and computer-aided design software (Rhinoceros v4.0, NURBS modeling for Windows; Robert McNeel and Associates).

The implant design was obtained by creating a styled layer descriptor format archive of a specimen of external hexagon, internal hexagon, and Morse taper implants (Conexão Sistemas de Prótese Ltda), which included their specific abutments. The implant and abutment geometries were simplified by 3D computer-aided design software (SolidWorks 2010; SolidWorks Corp).

The implant-supported crown was simulated with a screw connection for external and internal hexagon implant models and with cement connection for Morse taper implant models. The cement layer was simulated with a 0.03-mm thickness.

After the modeling phase, all geometries were exported to finite-element software for pre- and post-processing (FEMAP v10.2 software; Siemens PLM Software, Inc). The first step was to obtain the meshes by using tetrahedral parabolic solid elements for all structures that were involved. Mechanical properties were determined for values obtained from published reports.

Table 1. Models used

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>External hexagon implant with screw-retained implant-supported crown</td>
</tr>
<tr>
<td>2</td>
<td>Internal hexagon implant with screw-retained implant-supported crown</td>
</tr>
<tr>
<td>3</td>
<td>Morse taper implant with cement-retained implant-supported crown</td>
</tr>
</tbody>
</table>
and are presented in Table 2.35–36 All materials were homogeneous, isotropic, and linearly elastic.35

The crown-abutment and abutment-implant contacts were assumed to be symmetrical contacts. All other contacts were also assumed to be symmetrically welded. Constraints definitions were established as fixed in the x, y, and z axes at the mesial and distal boundary surfaces of the cortical and trabecular bone. All other model surfaces were unrestricted. A normal occlusal force (200-N axial load and 100-N oblique load)39 and a parafunctional occlusal force (1000-N axial load and 500-N oblique load)11 were applied on the occlusal surface of the crowns. The axial load was distributed on 4 points on the internal slope of the cusps, whereas the oblique load was divided into 2 points of loading.

The analysis was generated using preprocessing/postprocessing software (FEMAP v10.2; Siemens PLM Software, Inc) and exported to finite element software (NeiNastran v9.2; Noran Engineering, Inc). Results were then imported into the finite element software for plotting the maximum principal stress map.

The maximum principal stress value was used to evaluate cortical bone stress distribution analysis. This criterion makes it possible to distinguish between tensile and compressive stresses. Positive values represent tensile stress, and negative values represent compressive stresses (in megapascals [MPa]).40

Three-way analysis of variance (ANOVA) and the Tukey post hoc test were used to analyze interactions between the main results with statistical software (Sigma Plot 13; Systat Software, Inc) (α=.05). The sum-of-squares criteria was also used.41 The power analysis was calculated with statistical software for each comparison (connection, load, and force) and analyzed with 3-way ANOVA.

RESULTS

Patterns of stress distribution were similar under normal axial occlusal force (Fig. 1) and parafunctional occlusal forces (Fig. 2) among the 3 structures were evaluated. Tensile and compression stresses were around the platform and at the level of the first implant thread. The parafunctional occlusal force was more damaging (P<.001) to bone tissue than normal occlusal force (Fig. 3). The power of the test was β=.983. The oblique load significantly (P<.001) influenced the stress intensity compared with that of the axial load (β=1) (Fig. 3).

The external connection significantly (P<.001) influenced the stress compared with that of the other connection types (Fig. 3), regardless of the load direction (axial or oblique) (Table 3). No statistically significant differences (P=.991) were found between the Morse taper and internal hexagon connections (Fig. 3). The power of the test was β=.983. The biomechanical behavior of the external connection concentrated the stress to a greater extent, regardless of the analyzed load direction (axial and oblique) (Table 3).

Because of the particularities of the parafunctional occlusal force, it was analyzed separately. Thus, 3-way ANOVA and the Tukey post hoc test were used to analyze connections, regions, and loading. Results indicated no significant difference between the internal hexagon and Morse taper implants (P=.893). The external hexagon implant significantly influenced stress intensity compared with the internal hexagon and Morse taper connections (P<.001) (Fig. 4).

Specific analysis of the different regions and connections showed statistically significant differences among the distal versus lingual (P<.001), distal versus mesial (P<.001), buccal versus lingual (P<.001), buccal versus mesial (P<.001), and mesial versus lingual (P<.001) regions. However, no statistically significant results were found for the distal versus buccal region (Fig. 5).

Figure 5 also shows that the external hexagon implant exhibited the highest stress compared with that of the other groups (P<.001). However, no statistically significant differences were found between the internal connection implants (P=.893). Specific analysis of load direction showed that oblique loading significantly influenced the stress compared with the axial force (P<.001), particularly in the external hexagon model (Fig. 6).

DISCUSSION

The FEA method has been used successfully to evaluate the biomechanical performance of implant-supported prostheses. However, it has certain limitations such as simplification and the impossibility of simulating the biological response of the structures analyzed. Thus, simplifications should be performed so that the final configuration reflects the clinical situation and best reveals the characteristics to be analyzed. Simplifications performed on all models, therefore, did not generate large changes in the final results. The simplification level was controlled to achieve an acceptable margin of error.33
Results of this study demonstrated that parafunctional loads and oblique loads produced high stress levels in bone tissue, especially in the external hexagonal connection. Study hypotheses, therefore, were confirmed in that the maximum principal stress values based on statistical analyses showed that these factors greatly influenced stress concentration.

The FEA of this study showed that the characteristics of a prosthetic connection are closely associated with the stress distribution pattern, which has also been observed in previous studies.\(^{15,16}\) Within this context, implants that have an external connection configuration do not allow positive locking. The loads are thus absorbed by the abutment screw, which can

produce increased micromovement because of the hexagonal size and the rotation center and can reduce the resistance to lateral and rotational movements. This may negatively influence the concentration of stresses in periimplant bone, which has been observed in other studies.

Internal connections exhibited the most favorable situation from a biomechanical point of view, probably because of their geometric configuration. With regard to the Morse taper connections, stress centralization, micromovements reduction, connection depth, manner of locking, and friction of the internal conical...
connection are involved in the resistance to nonaxial loads15,27 and, therefore, in stress reduction in bone tissue. Favoring the stress distribution in the connection area among the inner walls of the internal hexagon implant produced the same effect, as verified by mathematical models28 and by in vitro studies.29,30

According to Misch,22 external hexagon implants represent an option for rehabilitating patients with bruxism because the increase in the inner diameter of internal hexagon implants and consequent reduction of its walls compared with that of the external connection implant can reduce its resistance by approximately 40\%.

However, evidence from the current study indicates that areas of tensile stress (ranging from 50 to 100 MPa) in cortical bone around the platform, particularly under parafunctional oblique loading (which was also verified by statistical analysis), could predispose the bone tissue to a limiting situation, given that, according to Bozkaya et al11 the limit of cortical bone under tensile stress is 100 MPa.

Parafunctional loading increased the magnitude of the stresses 3 to 4 times and created a greater area of distribution in the implant system and in the bone tissue, although the tensile strength of the structures was not exceeded. According to Misch,42 bruxism modifies the normal masticatory force duration (in hours rather than in minutes), its direction (lateral rather than axial), type (shear rather than compression), and magnitude (4-7 times). These factors, when combined, could have contributed to the results observed in the 3D models of this study.

Bruxism and other oral parafunctions have been listed as risk factors with regard to dental implant treatment.31,32 Researchers have used this parafunctional habit as an exclusion criterion for clinical studies.43 For
this reason, published reports have provided limited information about the influence of bruxism on dental implants. Only 1 recommendation, based on the clinical experience of experts, is available as a guideline.7

CONCLUSIONS

The following conclusions were reached based on the methodology and results: the internal connection implants presented the most favorable biomechanical situation under different loading types and directions; the biomechanical behavior of the external connection implant was least favorable in relation to bone tissue; and the parafunctional loading induced an increase of 3 to 4 times the magnitude of the stresses in bone tissue compared to that with functional loading.

REFERENCES

Corresponding author:
Dr Rosse Mary Falcón-Antenucci
Rua Jose Bonifácio 1193, Vila Mendonça, Araçatuba
São Paulo 16015-050
BRAZIL
Email: rosse_falcon@yahoo.com.br