Demands for highly esthetic and more biocompatible materials have increased the use of ceramic restorations in fixed prosthodontics. Because of its adequate mechanical properties, zirconia has a wide range of applications in restorative dentistry. For this reason, zirconia could also serve as an alternative to metal ceramics in abutment teeth for partial removable dental prostheses (RDPs) with a metal framework.

The survival rate of abutment teeth is lower than that of nonabutment teeth. Risk factors for loss of an abutment tooth have included a low number of residual teeth, which increases the occlusal load on the abutment tooth, a crown-root ratio (>1:1), an endodontically treated tooth, and a pocket depth greater than 5 mm. RDPs are also associated with caries and periodontal diseases, although RDPs designed according to hygienic principles have been clinically successful.

Direct and indirect retainer elements may have more damaging periodontal effects when compared with nonabutment elements. Properly balanced and distributed forces of an RDP on an abutment tooth can enhance the longevity of both the oral structures and the RDP.

An occlusal rest seat for an RDP provides vertical support and allows occlusal forces to be transmitted through the long axis of the abutment tooth. Furthermore, the proper form of the abutment tooth and rest seat allows for
In an in vitro study, clasps caused more wear in composite resin surfaces than in enamel or ceramic surfaces. The fabrication of ceramic crowns for RDPs has been described in 1 study in which rest seats and guide planes were made of densely sintered aluminum oxide and retentive areas were made of veneering porcelain. To our knowledge, no studies of zirconia used as a material in abutment teeth for RDPs have been published. The hypothesis of this study was that veneered zirconia single crowns can be successfully used in abutment teeth for RDPs with a metal framework. The purpose of this retrospective clinical follow-up study was to evaluate the outcome of veneered zirconia single crowns in abutment teeth for RDPs in participants treated by predoctoral students.

MATERIAL AND METHODS

The study protocol was approved by the Ethical Committee of the Northern Ostrobothnia Hospital District (100/2013). Altogether 17 participants treated with a veneered zirconia single crown in an abutment tooth for an RDP attended the clinical follow-up study between February and April 2013. The participants were treated between 2007 and 2010 by predoctoral dental students at the Institute of Dentistry, University of Oulu. There were 9 men and 8 women; their mean age was 62.5 years (47 to 75 years). The mean follow-up time was 4.2 years (2.9 to 5.4 years). Altogether 37 veneered zirconia single crowns were prepared for an abutment tooth for a clasp-retained RDP with a metal framework: 22 crowns with an occlusal rest seat and 15 crowns with both an occlusal rest seat and retentive clasps (Table 1). The opposing dentition was natural teeth in 57%, fixed prostheses in 19%, a complete removable dental prosthesis in 19%, and an RDP in 5% of the participants.

All the participants underwent an oral hygiene program before prosthetic treatment. The preparation of the abutment tooth for the crown was done in accordance with international treatment guidelines, taking into account adequate occlusal clearance and the space needed for the guide plane and occlusal rest seat for the RDP with a metal framework. Composite resin (Z250; 3M ESPE) was used for foundation restorations when needed, and a fiber post (RelyX; 3M ESPE) was used in endodontically treated teeth. The restorations were bonded with dual-polymerizing, self-adhesive universal resin cement (RelyX Unicem; 3M ESPE) according to the manufacturer’s instructions. The zirconia frameworks in the single crowns were fabricated from Zirkonzahn Zirconia (Zirkonzahn). The frameworks were fabricated by manual milling, the minimal thickness of the framework was 0.4 mm, and the veneering porcelain (GC Initial Zr; GC Europe) was layered onto the frameworks. The rest seats were located on the zirconia framework, and the veneering porcelain originated near the incisal or occlusal edge of the single crown (Figs. 1, 2). All the treatment procedures were performed under the supervision of clinical instructors specialized in prosthetic dentistry.

The RDPs with a metal framework were produced according to a standardized protocol. The material for the frameworks was a cobalt-chromium alloy (Wironit extra-hard; Bego) and the denture bases were acrylic resin (ProBase 36 P-V; Ivoclar Vivadent AG). Dental rests were used as supporting structures on the palatal or lingual side of the abutment teeth and at the incisal edges, if needed. In the mandible, the bar connector was located to the lingual of the mandibular teeth. In the maxilla, the major connectors were a palatal plate and/or a palatal bar. Cast clasps were used as retaining structures in the abutment teeth.

The clinical follow-up examinations were carried out by the same prosthodontist (R.N.). The anatomic form of the crown, marginal fidelity (the border between the crown and the tooth was felt with a probe), wear of the ceramic surface in the rest seat, and fracture of the veneering porcelain were examined and assessed as good, acceptable, or unacceptable. The retention and stability of the RDPs were recorded as good, moderate, or poor. Retention was evaluated by trying to displace the RDP against vertical forces. Retention was assessed as good if the RDP resisted displacement, moderate if only minor displacement was noticed, and poor if the RDP loosened easily. Stability was evaluated by applying rotational and horizontal forces directed posteriorly, anteriorly, and transversally to the RDP. Stability was assessed as good if the RDP remained steady, firm, and constant in position, moderate if pushing the RDP in the occlusal or lateral direction caused swinging or loosening, and poor if the RDP did not remain in position when occlusal or lateral stresses were applied.

RESULTS

The complications found in veneered zirconia single crowns made for an abutment tooth for an RDP were fracture of the veneering porcelain (11%) and fracture of the occlusal rest seat (3%) (Tables 1, 2; Fig. 3). Wear of the ceramic surfaces of the rest seats for the RDPs was not found in any crowns.
Retention was good in all RDPs. The stability was good in 73% and moderate in 23% of the RDPs.

DISCUSSION

The veneered zirconia single crowns were suitable for use for RDP abutment teeth. The most prevalent complication was fracture in the veneering porcelain (11%), which has been previously reported with zirconia restorations. However, in all crowns, the zirconia surface of the rest seat toward the metal framework of the RDP was shiny and smooth as felt with an explorer, and no wear was seen. In 1 crown the zirconia occlusal rest seat was fractured, perhaps due to the participant’s bruxism. The RDP causes stress on the abutment tooth and on the veneering porcelain surface. The special considerations and extra space needed for occlusal rest seats must be taken into account in preparing the design of abutment teeth for RDPs. Technically, the abutment crowns for RDPs were shaped to provide occlusal rest seats, guide planes, and retentive areas for clasps; for this reason, metal ceramic crowns have traditionally been the solution of choice for RDP abutments. In this study the occlusal rest seats were excessively contoured in many crowns; in the fractured crown, the margin of the crown was not below the preparation margin. In all crowns, the occlusal rest seat was pure zirconia and the ceramic veneer was located near the incisal edge of the crown.

Table 1. Opposing dentition, Kennedy classification, and zirconia single crowns in participants with RDPs

<table>
<thead>
<tr>
<th>Participant Number</th>
<th>Opposing Arch</th>
<th>Kennedy (maxillary)</th>
<th>Kennedy (mandibular)</th>
<th>Veneered Zirconia Single Crowns</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Complete denture</td>
<td>I</td>
<td></td>
<td>Bilateral occlusal rest seat and clasp</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Own teeth</td>
<td>II</td>
<td></td>
<td>Unilateral occlusal rest seat</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Complete denture</td>
<td>I</td>
<td></td>
<td>Unilateral occlusal rest seat and clasp</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Own teeth</td>
<td>I</td>
<td>II</td>
<td>Unilateral occlusal rest seat and clasp (maxillary)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Complete denture</td>
<td>I</td>
<td>I</td>
<td>Unilateral occlusal rest seat and clasp</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>Bilateral occlusal rest seat and clasp (maxillary)</td>
<td>3 more teeth with occlusal rest seat (maxillary)</td>
</tr>
<tr>
<td>7</td>
<td>II</td>
<td>I</td>
<td>III</td>
<td>Unilateral occlusal rest seat and clasp (mandibular)</td>
<td>Porcelain fracture (3 teeth)</td>
</tr>
<tr>
<td>8</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>Unilateral occlusal rest seat and clasp</td>
<td>Porcelain fracture</td>
</tr>
<tr>
<td>9</td>
<td>Own teeth</td>
<td>I</td>
<td></td>
<td>Bilateral occlusal rest seat</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Removable partial denture</td>
<td>I</td>
<td></td>
<td>Bilateral occlusal rest seat and clasp</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Complete denture</td>
<td>I</td>
<td></td>
<td>Bilateral occlusal rest seat and clasp</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Own teeth</td>
<td>I</td>
<td></td>
<td>Unilateral occlusal rest seat and clasp</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Complete denture</td>
<td>I</td>
<td></td>
<td>Bilateral occlusal rest seat and clasp</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>2 teeth with occlusal rest seat (maxillary)</td>
<td>Unilateral occlusal rest seat and clasp (mandibular)</td>
</tr>
<tr>
<td>15</td>
<td>Own teeth</td>
<td>III</td>
<td></td>
<td>Bilateral occlusal rest seat and clasp</td>
<td>2 more teeth with occlusal rest seat</td>
</tr>
<tr>
<td>16</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>Bilateral occlusal rest seat and clasp (mandibular)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>Bilateral occlusal rest seat and clasp (mandibular)</td>
<td>5 more teeth with occlusal rest seat (mandibular)</td>
</tr>
</tbody>
</table>

Figure 1. Zirconia single crowns with occlusal rest seats prepared as abutment teeth for RDP in maxillary canines and premolars. Rest seats located in zirconia surface and veneering porcelain originated near occlusal edge of crown. RDP was retained with cast clasps in maxillary premolars and in molars (Kennedy III).
Zirconia has changed traditional treatment concepts in single crowns and RDPs. The improved esthetics support the use of zirconia, despite the metal RDP framework. The material properties of ceramics make the design of the occlusal rest seat more rounded than in metal ones, which may reduce resistance form. However, in this study, the retention and stability were recorded as good in most of the RDPs with a metal framework.

CONCLUSION

Veneered zirconia single crowns are suitable for use in abutment teeth for partial RDPs with a metal framework. Fracture in the veneering porcelain remains a problem with veneered zirconia, although the zirconia surface in rest seats for RDPs showed no wear. This will encourage the use of zirconia instead of metal ceramics, but more follow-up studies are needed to determine the survival and success of zirconia crowns in these treatments.

REFERENCES

Corresponding author:

Dr Juha Pihlaja

University of Oulu

Box 5281, FIN-90014 Oulu

FINLAND

Email: juha.t.pihlaja@gmail.com